Burst of virus infection and a possibly largest epidemic threshold of non-Markovian susceptible-infected-susceptible processes on networks.
نویسندگان
چکیده
Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian susceptible-infected-susceptible (SIS) process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1/ln(λ_{1}+1), where λ_{1} is the largest eigenvalue of the network's adjacency matrix, then the infection will persist on the network under the mean-field approximation. Thus, 1/ln(λ_{1}+1) is possibly the largest epidemic threshold for a general non-Markovian SIS process with a Poisson curing process under the mean-field approximation. Furthermore, non-Markovian SIS processes may result in a multimodal prevalence. As a byproduct, we show that a limiting Weibullian SIS process has the potential to model bursts of a synchronized infection.
منابع مشابه
Burst of virus infection and a possibly largest epidemic threshold of non-Markovian SIS processes on networks
Since a real epidemic process is not necessarily Markovian, the epidemic threshold obtained under the Markovian assumption may be not realistic. To understand general non-Markovian epidemic processes on networks, we study the Weibullian SIS process in which the infection process is a renewal process with a Weibull time distribution. We find that, if the infection rate exceeds 1/ ln(λ1 + 1), whe...
متن کاملNon-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks
Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexpo...
متن کاملNon-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks.
Most studies on susceptible-infected-susceptible epidemics in networks implicitly assume Markovian behavior: the time to infect a direct neighbor is exponentially distributed. Much effort so far has been devoted to characterize and precisely compute the epidemic threshold in susceptible-infected-susceptible Markovian epidemics on networks. Here, we report the rather dramatic effect of a nonexpo...
متن کاملEpidemic Spreading in Non-Markovian Time-Varying Networks
Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We show that...
متن کاملSurvival time of the susceptible-infected-susceptible infection process on a graph.
The survival time T is the longest time that a virus, a meme, or a failure can propagate in a network. Using the hitting time of the absorbing state in an uniformized embedded Markov chain of the continuous-time susceptible-infected-susceptible (SIS) Markov process, we derive an exact expression for the average survival time E[T] of a virus in the complete graph K_{N} and the star graph K_{1,N-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E
دوره 97 2-1 شماره
صفحات -
تاریخ انتشار 2018